Phage DNA dynamics in cells with different fates.

نویسندگان

  • Qiuyan Shao
  • Alexander Hawkins
  • Lanying Zeng
چکیده

Bacteriophage λ begins its infection cycle by ejecting its DNA into its host Escherichia coli cell, after which either a lytic or a lysogenic pathway is followed, resulting in different cell fates. In this study, using a new technique to monitor the spatiotemporal dynamics of the phage DNA in vivo, we found that the phage DNA moves via two distinct modes, localized motion and motion spanning the whole cell. One or the other motion is preferred, depending on where the phage DNA is ejected into the cell. By examining the phage DNA trajectories, we found the motion to be subdiffusive. Moreover, phage DNA motion is the same in the early phase of the infection cycle, irrespective of whether the lytic or lysogenic pathway is followed; hence, cell-fate decision-making appears not to be correlated with the phage DNA motion. However, after the cell commits to one pathway or the other, phage DNA movement slows during the late phase of the lytic cycle, whereas it remains the same during the entire lysogenic cycle. Throughout the infection cycle, phage DNA prefers the regions around the quarter positions of the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning

Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...

متن کامل

Identification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning

Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...

متن کامل

I-35: Genetic Aberrations in Early Development:The Origins and The Fates

Genetic aberrations are commonly seen in human preimplantation embryos. Non-disjunction and premature division of a chromosome are common in both meiosis and mitosis divisions. The expected result for meiotic aneuploidies is full aneuploidy in the later stages whereas mosaicism is the most frequent event in the cleavage and blastocyst stages. The main causes for mosaicism are post-zygotic event...

متن کامل

Selection and Evaluation of Specific Single Chain Antibodies against CD90, a Marker for Mesenchymal and Cancer Stem Cells

Background: CD90, a membrane-associated glycoprotein is a marker used to identify mesenchymal stem cells (MSCs). Recent studies have introduced CD90, which induces tumorigenic activity, as a cancer stem cell (CSC) marker in various malignancies. Blocking CD90 activity with anti-CD90 monoclonal antibodies enhanced anti-tumor effects. To date, highly specific antibody single-chain variable fragme...

متن کامل

Phage-Bacterial Dynamics with Spatial Structure: Self Organization around Phage Sinks Can Promote Increased Cell Densities

Bacteria growing on surfaces appear to be profoundly more resistant to control by lytic bacteriophages than do the same cells grown in liquid. Here, we use simulation models to investigate whether spatial structure per se can account for this increased cell density in the presence of phages. A measure is derived for comparing cell densities between growth in spatially structured environments ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 108 8  شماره 

صفحات  -

تاریخ انتشار 2015